Academic year 2020-2021 Structural & Multidisciplinary Optimization Prof. P. Tossings & P. Duysinx

			Group A (1/94 Montefiore)	Group B (EMSHIP) (1/126)
1	09-15	13:45 14:30	General Presentation of the Course (Patricia Tossings) Fundamentals of Mathematical Programming including KKT conditions (Patricia Tossings)	General Presentation of the Course (Pierre Duysinx) Introduction to Optimization In Engineering Design (Pierre Duysinx)
2	09-22	13:45	Introduction to Optimization In Engineering Design Fundamentals of Structural Optimization (Pierre Duysinx)	Fundamentals of Mathematical Programming including KKT conditions (Patricia Tossings)
3	09-29	13:45	Unconstrained Optimization: Gradient Methods – Adaptation to quasi- unconstrained optimization ((Patricia Tossings)	Elementary Concepts in structural Optimization. Tests Problems. (Pierre Duysinx) Finite Element and Optimization (Pierre Duysinx)
4	10-06	13:45	Elementary Concepts in structural Optimization. Tests Problems. (Pierre Duysinx) Finite Element and Optimization (Pierre Duysinx)	Unconstrained Optimization: Gradient Methods – Adaptation to quasi- unconstrained optimization (Patricia Tossings)
5	10-13	13:45	Line Search Methods (Patricia Tossings)	Optimality Criteria (Pierre Duysinx)
		15:45	Project 1: Unconstrained Optimization	Project 1: Unconstrained Optimization
			Introduction to MATLAB	Introduction to MATLAB
6	10-20	13:45	Optimality Criteria (Pierre Duysinx)	Line Search Methods (Patricia Tossings)
		15:45	Personal Project 2: Optimality criteria for truss structures	Homework 2: Optimality criteria for truss structures
7	10-27	13:45	Supervised work Unconstrained optimization: Newton, Newton-like and quasi-Newton Methods (Patricia Tossings)	Supervised work From OC to Sequential Convex Programming. Structural Approximations (Pierre Duysinx)
		15:45	Supervised work	Supervised work
	11-03		AUTOMN BREAK	
8	11-10	13:45	From OC to Sequential Convex Programming. Structural Approximations (Pierre Duysinx)	Unconstrained optimization: Newton, Newton-like and quasi-Newton Methods (Patricia Tossings)
<u> </u>		15:45	Supervised work	Supervised work
9	11-17	13:45	General Constrained Optimization: Duality (Patricia Tossings)	Introduction to topology optimization (Pierre Duysinx)
		15:45		Supervised work
		23:59	Deadline Project 1 - Unconstrained Optimization	Deadline Project 1 - Unconstrained Optimization

10	11-24	13:45	Introduction to topology optimization	General Constrained Optimization:
			(Pierre Duysinx)	Duality (Patricia Tossings)
		15:45	Computer Project 3: Topology	Computer Work 3: Topology
			optimization using 99-line code	optimization using 99-line code
			Supervised work	
11	12-01	13:45	General Constrained Optimization:	Sensitivity Analysis (Pierre Duysinx)
			penalty and barrier functions,	
			augmented Lagrangian, SLP, SQP, etc.	
			(Patricia Tossings)	
		15:45	Supervised work	Supervised work
	12-04	23:59	Deadline Project 2 – Optimality	Deadline Homework 2 – Optimality
			Criteria	Criteria
12	12-08	13:45	Sensitivity Analysis (Pierre Duysinx)	General Constrained Optimization:
				penalty and barrier functions,
				augmented Lagrangian, SLP, SQP, etc.
				(Patricia Tossings)
		15:45	Supervised work	Supervised work
13	12-15	13:45	Introduction to Shape Optimization	Q&A (Patricia Tossings)
			(Pierre Duysinx)	Supervised work
		15:45	Q&A (Patricia Tossings)	Introduction to Shape Optimization
			Supervised work	(Pierre Duysinx)
	12-19		WINTER BREAK	
	01-03	23:30	Deadline Project 3 - Topology	Deadline Project 3 - Topology

PS/ Students have to attend at least 60% of the supervised computer work sessions.